Development of sd-rxRNA® for Retinoblastoma Therapy

Michael Byrne, PhD

ARVO
May 6th, 2013

OTC: RXII
This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Words such as “believes,” “anticipates,” “plans,” “expects,” “indicates,” “will,” “intends,” “potential,” “suggests” and similar expressions are intended to identify forward-looking statements. These statements are based on RXi Pharmaceuticals Corporation’s (the “Company”) current beliefs and expectations. Such statements include, but are not limited to, statements about the future development of the Company’s products (including timing of clinical trials and related matters associated therewith), the expected timing of certain developmental milestones, the reporting of unblinded data, potential partnership opportunities, the Company’s competition and market opportunity and pro forma estimates. The inclusion of forward-looking statements should not be regarded as a representation by the Company that any of its plans will be achieved. Actual results may differ from those set forth in this presentation due to risks and uncertainties in the Company’s business, including those identified under “Risk Factors” in the Company’s most recently filed Quarterly Report on Form 10-Q and in other filings the Company periodically makes with the U.S. Securities and Exchange Commission. The Company does not undertake to update any of these forward-looking statements to reflect a change in its views or events or circumstances that occur after the date of this presentation.
Program Number: 1258

Disclosure Block:

M. Byrne, RXi Pharmaceuticals E; H Singh, None;
D. Qi, None; J. Cardia, RXi Pharmaceuticals E;
L. Pandarinathan, RXi Pharmaceuticals E; K Holton, RXi Pharmaceuticals E;
K. Bulock, RXi Pharmaceuticals E;
L. Libertine, RXi Pharmaceuticals E; D. Cobrinik, None;
P. Pavco, RXi Pharmaceuticals E.
RNAi Overview

Targeting and Eliminating Disease Genes with sd-rxRNA

1. sd-rxRNA, designed to target a disease gene, is administered to a tissue

2. sd-rxRNA's drug-like properties enable efficient membrane penetration and accumulation in the cells

3. sd-rxRNA's structural and chemical modifications enable efficient loading into the RISC complex, where the two strands are split apart and a guide strand is retained within the RISC

4. Guide strand loaded RISC binds the target mRNA and cleaves it, blocking protein production and achieving a therapeutic effect
sd-rxRNA Combines Features of RNAi and Antisense Technologies

- **Medicinal Chemistry**
 - Improved cell uptake and PK/PD

- **Conventional RNAi**
 - Potent, long-lasting activity

- **Conventional Antisense**
 - Clinically relevant, validated PK/PD

- **sd-rxRNA**
 - Single compound designed to not require delivery vehicle
 - Robust uptake & silencing in multiple preclinical models
 - Structural diversity = novel intellectual property
 - Combining many positives of RNAi & antisense, while avoiding many negatives
 - Provides for broad pipeline of RNAi drugs for unmet medical needs

sd-rxRNA therapeutic compounds with drug-like properties
sd-rxRNA: Robust Cellular Uptake

in vitro and in vivo

Delivery and silencing demonstrated in many different cell types
Human, Primate, Rat, Mouse, Adherent, Non-adherent, Primary, Transformed

Efficient delivery of sd-rxRNA to multiple tissues *in vivo* upon local and systemic administration
sd-rxRNA: Improved Retinal Delivery vs. Stabilized RNAi Compounds

Intravitreal injection of fluorescently-labeled sd-rxRNA results in retinal delivery in mouse and rabbit.
sd-rxRNA: Extended Silencing in vivo in the Rodent Eye

- 3 µg PPIB or NTC administered by intravitreal injection (in 1 µl) to mouse eyes
- mRNA levels were quantified by Quantitative PCR (QPCR) and normalized to b-actin
- Data assembled from 5 different studies to enable sufficient 'n' for each data point (n=5-8); graphed +/- SD relative to PBS in each study; ** p ≤ 0.01
- PBS = Phosphate Buffered Saline (vehicle)
- NTC = Non-Targeting Control sd-rxRNA
- PPIB = Anti-cyclophilin B sd-rxRNA

Duration of Silencing Induced by PPIB Targeting sd-rxRNA

<table>
<thead>
<tr>
<th>Time after injection, days</th>
<th>PBS</th>
<th>NTC</th>
<th>PPIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>110</td>
<td>110</td>
<td>60%</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
<td>110</td>
<td>51%</td>
</tr>
<tr>
<td>4</td>
<td>110</td>
<td>110</td>
<td>45%</td>
</tr>
<tr>
<td>7</td>
<td>110</td>
<td>110</td>
<td>32%</td>
</tr>
<tr>
<td>14</td>
<td>110</td>
<td>110</td>
<td>22%</td>
</tr>
<tr>
<td>21</td>
<td>110</td>
<td>110</td>
<td>14%</td>
</tr>
<tr>
<td>28</td>
<td>110</td>
<td>110</td>
<td>6%</td>
</tr>
</tbody>
</table>
sd-rxRNA: Preliminary Safety Evaluation

Color Fundus Photography revealed no RPE degeneration or other overt signs of retinal damage post administration of sd-rxRNA or PBS.

- 5 µg (1 µl) of sd-rxRNA targeting MAP4K4 was administered by intravitreal injection to mouse eyes.
Fluorescein angiography revealed no leakage of retinal/choroidal blood vessels through 3 weeks post administration of sd-rxRNA or PBS.

- 5 µg (1 µl) of sd-rxRNA targeting MAP4K4 was administered by intravitreal injection to mouse eyes
- Images collected over the course of three weeks
Optical Coherence Tomography analysis revealed no changes in retinal morphology through 4 weeks post administration of sd-rxRNA or PBS.

- 5 µg (1 µl) of sd-rxRNA targeting MAP4K4 was administered by intravitreal injection to mouse eyes
- Images collected over the course of 4 weeks
ERG recordings reveal similar retinal function following dosing with sd-rxRNA or PBS.

- 5 µg (1 µl) of sd-rxRNA targeting MAP4K4 was administered by intravitreal injection to mouse eyes
- Recordings collected at baseline and three weeks post administration
sd-rxRNA: Dose Dependent Silencing *in vitro* in Retinoblastoma Cells

PPIB mRNA levels were reduced in a dose dependent manner relative to non-targeting control (NTC) sd-rxRNA forty eight hours post administration.

- 50,000 cells per well were treated with PPIB targeting sd-rxRNAs at 0.01, 0.025, 0.05, 0.1, 0.3, and 1 uM.
- At 48 hours, PPIB mRNA levels were quantified by a branched DNA assay.
Uptake of sd-rxRNA *in vivo* in Mouse Retina and Tumor Cells 24 hr Post Injection

sd-rxRNA Cone arrestin sd-rxRNA Cone arrestin

Twenty-four hours post injection

a) sd-rxRNA (red) co-localized with tumor cells (green) in the subretinal space

b) sd-rxRNA co-localized with tumor cells in the vitreous

c) sd-rxRNA is visible in the retina

- Mouse eyes were seeded subretinally with Y79 retinoblastoma cells
- 10 µg of DY547-labeled sd-rxRNA (red) was administered by intravitreal injection (1µl) 3 weeks after seeding
Summary

- sd-rxRNA: self-delivering RNAi compounds
 - Robust cellular uptake in the absence of any delivery vehicle
 - Dose-dependent target-specific silencing in vitro and in vivo
 - Full retinal penetration/delivery in vivo in the mouse and rabbit eye
 - Extended duration of effect (at least 14 days) following a single intravitreal injection in mouse
 - Preliminary safety evaluations show no morphological or functional changes to the eye following administration

- sd-rxRNAs exhibit dose-dependent target-specific silencing in Y79, RB176, and RB177 retinoblastoma cells in vitro

- sd-rxRNA is visible in tumor cells in the subretinal space and in the vitreous 24 hours post injection

Next steps
 - Design and characterize sd-rxRNAs against novel retinoblastoma targets
 - Evaluate specific sd-rxRNAs in human retinoblastoma cells in an orthotopic mouse xenograft model
Acknowledgments

RXi Pharmaceuticals
- Pamela Pavco
- Karen Bulock
- Lyn Libertine
- Pathi Pandarinathan
- James Cardia
- Katherine Holton

Memorial Sloan-Kettering Cancer Center
- Hardeep Singh
- Donglai Qi
- David Cobrinik

USC-Children’s Hospital Los Angeles

UMass Medical School
- Radouil Tzekov
- Yi Wang
- Shalesh Kaushal

Research for this work is now supported by the National Cancer Institute of the National Institutes of Health under Award Number R43CA165899.

Poster: 6262 - D0070. Novel Anti-CTGF RNAi Therapy for Treatment of Proliferative Vitreoretinopathy (PVR) and other Ocular Disorders. Thursday 10:30-12:15